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Executive Summary

A new methodology for determining the optimal multi-physics ensemble configuration for 
predicting California wind and solar resources with the Weather Research and Forecast (WRF) 
atmospheric model is presented. We reduced the enormous number of possible WRF physics 
configurations to a manageable set by first sampling schemes from each physics category that 
utilize different parameterization approaches and demonstrate varying degrees of sophistication.  
Latin Hypercube Sampling (LHS) design was next used to further reduce the initial set of physics 
configurations to 420 ensemble members by sampling the physics scheme 6-dimensional space.  
A WRF test case was run with the 420-member ensemble to study the sensitivity of wind and 
solar predictions to each of the main WRF physics categories. Analysis of variance (ANOVA) on 
the WRF sensitivity predictions revealed that the physics categories with the greatest effect on 
wind predictions were the planetary boundary layer and the land surface model.  Choice of the 
shortwave radiation model is the primary source for solar flux variability in the ensemble
predictions.  ANOVA results indicated that the number of WRF physics combinations could be 
further reduced to 54 members and still account for the majority of the spread in the ensemble 
wind and solar prediction distribution. Several forecast case studies with dynamically evolving 
wind and solar conditions spanning all seasons were run with the 54-member ensemble.  An 
analysis of ensemble forecast error and spread from the case studies indicated that only 18 
ensemble members were needed to generate accurate wind and solar forecasts over California.
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1. Introduction

Forecasting renewable generation with a numerical weather prediction (NWP) model is 
inherently difficult due to the intermittent nature of wind and solar resources.  The majority of 
NWP prediction errors associated with renewable generation forecasting can be attributed to 
uncertainties in the model initial / lateral boundary conditions, as well as imperfect model 
physics.  One method to account for the uncertainty associated with wind and solar forecasting
and to improve the prediction skill is to run a NWP model with a suite of varying physics 
configurations over the same forecast period.  By doing so, a multi-physics ensemble is generated 
that is capable of sampling sources of model error and estimating forecast uncertainty (Hou 
2001, Murphy 2004, Eckel 2005, Berner 2010, Hacker 2011). In addition, the multi-physics 
ensemble approach provides a probabilistic forecast of the future state of the atmosphere that is 
particularly beneficial when modeling dynamically evolving wind and solar resources.  The rate of 
growth in model uncertainty has been shown to be better captured by a multi-physics ensemble 
approach versus a multi-initial conditions approach for short-range weather forecasting 
(Strensrud 2000).  This finding makes the multi-physics ensemble philosophy ideal for renewable 
forecasting since the relevant prediction timeframe for most utility grid operations is usually one 
or two days.

The need for a multi-physics forecasting approach arises from the fact that no single physics 
configuration (i.e. a deterministic run) can always perform the best relative to other 
configurations over a wide range of atmospheric stabilities and phenomena.  Also, a single 
physics configuration is incapable of sampling known sources of uncertainty associated with 
model sub-grid scale processes and is therefore unable to capture a probability distribution of 
atmospheric conditions at those scales.

Project Goal

The goal of this study is to determine the optimal multi-physics ensemble configuration for 
predicting California renewable generation.   While running a large ensemble is likely to capture 
more sources of uncertainty, it can be computationally costly or even infeasible.  An optimal 
ensemble in this context is therefore one that is small enough to be computationally 
manageable, but is very similar to a larger ensemble in terms of its prediction accuracy and ability 
to capture uncertainty.

Finding such an optimal multi-physics ensemble configuration for California renewable resources 
will have two major benefits.  First, private industry weather forecasting groups can use the 
project results as a foundation for improving the accuracy of existing ensemble prediction
systems.  Secondly, research groups, such as those at national labs that perform large-scale 
renewable integration studies (e.g. Edmunds et al., 2013), can use the findings to make the best 
use of available computing resources. By reducing the number of multi-physics ensemble 
members, computing resources are freed up to sample additional known sources of uncertainty 
and therefore improve the confidence in research conclusions.

Methodology

The research methodology used to identify the optimal multi-physics ensemble members for 
California wind and solar generation consisted of three main steps.  The first step involved
reducing the large number of possible physics combinations to a more manageable set.  The 
approach for reducing the initial set of physics combinations is discussed in Section 3 and 
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involved sampling across the sophistication of physics schemes and Latin hypercube sampling.
The second step involved performing an analysis of variance (ANOVA) on predicted wind and 
solar meteorological data generated from a WRF forecast simulation with a large number of 
ensemble members.  The ANOVA of the generated weather data isolated physics schemes that 
were the major contributors to the variability in the ensemble predictions, thus allowing for 
further reduction in the number of physics configurations to be included in the ensemble. Results 
of the ANOVA are provided in Section 3.  This second step will hereafter be referred to as the 
sensitivity test. The third and final step of the methodology involved generating renewable 
forecasts for several case studies with dynamically evolving wind and cloud conditions using the
reduced physics configurations. The case study results were then compared to synthetically 
generated wind and solar observations in order to calculate prediction skill for the physics 
configurations we considered. ANOVA of the forecast errors in the case studies then determined
if the set of physics configurations could be further reduced without negatively impacting the 
ensemble prediction skill or spread.  Results of the forecast case study analysis are discussed in 
Section 4.

Ideally, the analysis of this research would involve renewable power generation, but these data 
are difficult to obtain from site operators.  As a result, in the absence of generation data, we 
focused on meteorology (i.e. wind speed and solar insolation) for this study. Also, we used
model-generated synthetic weather observations to verify ensemble forecast results instead of 
onsite meteorological data.  This is due to limited availability of wind and solar observations 
made at renewable generation sites.

2. Renewable Forecast Design

2.1 Atmospheric Model

The numerical weather prediction (NWP) model used to generate wind and solar forecasts in this 
study was the non-hydrostatic, fully compressible Weather Research and Forecast (WRF) model 
(Skamarock et al., 2008).  Specifically, version 3.5.1 of the advanced research dynamical core of 
the WRF code was used.  WRF is a state-of-the-science community-based atmospheric model 
deigned to address both operational weather forecasting and broad atmospheric research needs. 
WRF was developed via collaboration among numerous academic, research, and government 
organizations to streamline the transfer of atmospheric research findings to an operational 
capacity.  The large set of available model physics schemes and data assimilation approaches 
coupled with efficient model nesting make WRF appropriate for performing simulations on scales 
of motion from tens of meters to thousands of kilometers. Source code for WRF is available for 
download by the public at no cost through a National Center for Atmospheric Research (NCAR) 
supported website1.

Several features make WRF the ideal atmospheric model to use for investigating the optimal 
multi-physics ensemble configuration for California renewable generation prediction.  WRF is 
currently widely used by both research and private weather forecasting sectors.  Therefore, any 
‘best practices’ concluded from this study can be utilized by an existing large user base.  In 
addition, WRF has numerous schemes available for each of the main physics categories (e.g. land 
surface model, shortwave radiation, etc.), leading to a large number of working physics 

                                                            
1 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
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configurations, which is ideal for any ensemble-based study.  Also, WRF source code has been 
developed and optimized to run on high-performance parallel computing resources, allowing for 
a large number of high-resolution ensemble forecasts to be performed in a reasonable 
timeframe. 

Model Domain

A total of 4 model domains were used for the WRF atmospheric modeling, as shown in Figure 1.  
The outermost model domain, which is labeled D1, has a horizontal grid spacing of 27 km and 
covers the majority of the Western United States.  Also, the size of domain 1 is sufficient to 
simulate large-scale weather systems as they propagate across California.  Nested model domain 
2 (D2) covers all of California with a horizontal grid spacing of 9 km. Nested WRF sibling domains 
3 and 4 (labeled D3 and D4, respectively) both have a horizontal grid spacing of 3 km and were 
constructed to cover the significant wind resource regions of California (e.g. Tehachapi, Gorgonio, 
and Altamont).  The fine-scale 3 km grid spacing of domains 3 and 4 was necessary to accurately 
simulate wind flow and small-scale atmospheric features present in complex terrain. It should be 
noted that domains 3 and 4 have sufficiently high resolution that no cumulus parameterization 
was used following WRF documentation.

Figure 1. Nested WRF domain configuration used for the atmospheric ensemble modeling study. Model 
domain 1 (labeled D1) and domain 2 (D2) have a horizontal grid spacing of 27 and 9 km, respectively.  
Model domains 3 and 4 (D3, D4) both have a horizontal grid spacing of 3 km.

A total of 50 terrain-following vertical sigma levels were utilized for the WRF simulations.  The 
sigma level distribution was designed to generate a vertical resolution of approximately 15 - 20 m 
in the lowest 200 m of the atmosphere.  High vertical resolution was necessary in the surface 
layer for this study since we were running WRF in complex terrain and hub height wind speeds 
were a major focus of our analysis.  Above 200 m, the sigma level vertical resolution was
gradually stretched up to the model grid top at 50 hPa (~ 20 km ASL).  Due to the high horizontal 
and vertical resolution of the innermost WRF model domains, a fixed numerical time step of 10 
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seconds was used in domains 3 and 4.  Model domains 1 and 2 have larger fixed time steps of 90 
and 30 seconds, respectively.  We saved WRF model output every 15 minutes to generate a 
dataset with sufficient temporal resolution to study dynamically evolving atmospheric conditions.

Input Data

North American Model (NAM) 12 km analysis and lateral boundary condition files were used as 
gridded input data to generate the wind and solar forecasts.  NAM data were downloaded from a 
public data web server2 maintained by the University Corporation for Atmospheric Research 
(UCAR). The NAM boundary conditions files are available at 3-hour intervals and were used to 
update the lateral boundary accordingly throughout the numerical integration.  Analysis and 3-
hour forecast fields from the Global Forecast System (GFS) model were used for generating the 
synthetic observations, which are described in greater detail below.  GFS data are available at 
half-degree resolution and were downloaded from a web portal3 maintained by the National 
Climatic Data Center (NCDC). Metar, maritime, and mesonet data platform weather observations 
from the Meteorological Assimilation Data Ingest System (MADIS) [Miller 2005, Miller 2009], 
were used for model initialization and generating synthetic observations.

Four-Dimensional Data Assimilation

A four-dimensional data assimilation (FDDA) dynamical initialization approach was used for the 
WRF forecasts over a 6-hour spin-up period prior to the start of the pure forecast. The FDDA 
approach consists of both an analysis (Stauffer and Seaman, 1994] and observational [Liu et al., 
2005] relaxation term that nudges the numerical integration toward the observed state. WRF 
analysis nudging was used to constrain large-scale atmospheric features based on coarse 
resolution-gridded analysis fields. Conversely, observational nudging utilizes irregularly spaced 
weather observations to influence the development of model-simulated small-scale, localized 
atmospheric phenomena. The objective of using an FDDA based spin-up period is to generate an 
atmospheric state at the beginning of the simulation that is consistent with available observation 
data, thus leading to enhanced prediction skill.  During the 6-hour spin-up period, WRF analysis 
nudging was turned on above the boundary for model domains 1 and 2.  Analysis nudging was
used in the free atmosphere only to allow the model to simulate complex near-surface vertical 
features that may be absent in the coarser vertical and temporal resolution-gridded analysis 
fields. Observational nudging of MADIS data was used during the FDDA spin-up initialization on 
WRF domains 2, 3, and 4. FDDA initialization for WRF forecasting is ideal for this study since it has 
already been demonstrated to improve short-range wind predictions in the western-central 
United States (Liu et al., 2009).

Synthetic Observations

Using the FDDA capability described above, we generated synthetic observations of solar flux or 
hub height wind speed at the renewable resource locations considered in the study and 
described in detail in Section 2.2. The synthetic observations were used in the absence of onsite 
meteorological observations because they are the best possible estimate of the true state of the 
atmosphere that can be achieved with a sophisticated NWP model and data assimilation 
strategy. As with the forecast runs, a six-hour dynamic initialization spin-up period was used for 

                                                            
2 http://soostrc.comet.ucar.edu/data/grib/nam/
3 http://nomads.ncdc.noaa.gov/data/gfsanl/



7

generating the synthetic observations.  However, unlike the forecast simulations that assimilated
observations only during the spin-up period, the model integration for synthetic observations 
nudged toward analysis fields and assimilated all available weather observations for the entire 
simulation period.  Numerous studies (e.g. Stauffer and Seaman, 1990; Lo et al., 2005; Otte, 
2008; Bowden et al., 2012) have demonstrated that FDDA nudging reduces model simulation 
error and is therefore an effective strategy for generating accurate synthetic observations.

2.2 Renewable Resources

A total of 57 wind and solar resource sites in the Western United States were represented in the
study analysis, and their locations are shown in Figure 2. Some large renewable sites outside 
California were included in the analysis since renewable generation is frequently imported to 
California from out of state, making their renewable predictability relevant to California grid
operations. The study included wind parks, solar thermal / photovoltaic (PV) systems, small solar 
and distributed solar regions.  A total of 14.6 GW of renewable resource installed capacity was
included in the study analysis with 10.4 GW coming from wind and 4.2 GW from solar resources.  
It should be noted that additional renewable resources undoubtedly exist (particularly small 
solar). However, in the absence of a detailed up-to-date database of installed renewable 
capacity, only confirmed resources were included in the study.  A full list of the renewable 
resources represented in this study and their associated installed capacity is provided in the 
Appendix Table 1.

Figure 2. Map showing the location of renewable resources included in the modeling study. The locations 
of wind parks are denoted by green circles while solar thermal / PV sites are indicated by red circles.  Small 
solar and distributed solar regions are denoted by purple and blue boxes, respectively.

The downward solar flux at solar thermal and PV sites for each model output time was obtained
from the single nearest WRF model grid cell.  For distributed and small solar regions, an area 
average solar flux was calculated for each output time from all of the non-water land use grid 
cells within the regional renewable bounding box.
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For wind parks outside of California, the hub height wind speed was calculated from WRF output 
at a single grid cell by linearly interpolating the vertical wind profile to 80 m.  Wind speeds were
calculated for 80 m above ground level since this is a common hub height in the wind industry.  
Data from only a single grid cell was used to calculate the hub height wind speed for wind parks 
outside of California because they fall within the coarse resolution WRF outer domain.  
Approximate bounding boxes were used to represent wind parks in the high wind resource 
regions of California that fall within a WRF 3 km grid spacing domain.  An 80 m hub height wind 
speed was calculated at all grid cells falling within each of the wind park bounding boxes, and 
then a final wind park average wind speed was calculated for each model output time.  The 
average hub height wind speed for each wind park was ultimately used in the analysis discussed 
later.

3. Ensemble Member Downscaling

A few hundred thousand functioning model physics configurations are plausible with WRF 
version 3.5.1.  Such a large number of WRF configurations are infeasible to run even with high 
performance computing resources. In addition, data storage and post-processing at this scale 
would present their own unique challenges.  To reduce the number of combinations used for the 
ensemble forecast analysis, we employed a strategy of minimizing the redundancy of scheme 
parameterization approaches and utilized results from a sensitivity test case.

3.1 Sample across sophistication

We developed a preliminary list of physics schemes to include in our study by selecting models
that span the level of sophistication and parameterization approaches associated with each of
the main WRF physics categories.  For example, within the planetary boundary layer (PBL) physics 
category, some schemes use a simplistic non-local closure scheme to parameterize vertical 
mixing.  Conversely, some PBL schemes are more sophisticated and utilize a prognostic turbulent 
kinetic energy (TKE) methodology to represent local vertical mixing while other even more 
advanced schemes predict sub-grid scale TKE terms.  Another example is the land surface model 
(LSM), where the number of soil levels and treatment of vegetation effects on the surface energy 
balance varies greatly among the available LSM schemes. A list of the physics schemes obtained 
by sampling among the range of parameterization approaches for each physics category is 
provided in Table 1. It should be noted that the sensitivity of WRF forecast results to the choice 
of the surface layer scheme was not studied. Instead, the surface layer scheme recommended by 
WRF documentation for each PBL scheme was used.

Table 1.  Preliminary list of schemes obtained by sampling different model parameterization approaches
for each WRF physics category.

Physics category Scheme

Planetary Boundary Layer YSU MYJ QNSE MYNN2

Land Surface Model Thermal Diffusion Noah RUC Pleim-Xiu

Shortwave Radiation Dudhia CAM RRTMG FLG

Longwave Radiation RRTM RRTMG FLG

Cumulus Scheme Kain-Fritsch BMJ Grell-3 Tiedtke

Microphysics Lin WSM3 WSM5
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3.2 Latin Hypercube sampling

As discussed in the introduction, we took a sequential approach to determine the smallest 
number of ensemble members that is as close as possible to the full ensemble in terms of 
accuracy of its predictions and the magnitude of the ensemble spread.  As discussed below, at 
every stage of the analysis we down-selected to a smaller subset of the initial ensemble and 
performed a more detailed study of the smaller ensemble than at the previous stage.

Exhaustive sampling of all the combinations of the physics schemes listed in Table 1 would 
require 4×4×4×3×4×3 = 2304 WRF runs.  Since running such a large ensemble would be a sizeable
computation exercise even with high performance computing, at the very first stage of the 
analysis, this 6-dimensional space of physics categories was sampled using the Latin hypercube 
sampling (LHS) design.  LHS is a space-filling design that requires significantly fewer runs than 
sampling the entire grid of the 6-dimensional space above.  It is able to cover the input space 
efficiently by placing the points in each dimension of the input space so as to ensure that the 
distribution along each dimension is uniform (see Santner et al., 2003 and Fang et al., 2006 for 
more details on LHS designs).  Figure 3 shows an example of such a design for a 2-dimensional 
input space. 

Figure 3.  An example of a Latin hypercube sampling design for 2 inputs, x1 and x2.  Each of the two 
dimensions in this example is binned into 4 intervals, and each of the 4 bins along each dimension is 
populated, resulting in 4 sample points.  The number of bins along each dimension (in this example and for 
any number of dimensions) is thus equal to the number of points one wishes to sample.

We created an LHS design with 420 points, or runs, using the R statistical software (R Core Team, 
2013) (note that all statistical analysis described in this report was performed using the R 
software).  This number of runs was chosen because it is a multiple of the least common multiple 
of the unique numbers of levels in each of the 6 dimensions (4×3 = 12 in this case) and was thus a 
convenient number for the LHS design.  In addition, it was in the feasible range of the number of 
runs we could complete at this stage of the analysis.

A large-scale WRF model physics sensitivity test was run with the 420 ensemble members
specified by the LHS over the period of 7 April at 12:00 Z to 9 April at 06:00 Z of 2013.  This 
particular time period was selected due to a large amount of variability in wind speed at the 
major wind resource locations in California and varying cloud cover over large portions of the 
WRF model domains.

Upon completion of the WRF sensitivity test, it was revealed that not all of the physics scheme 
combinations function correctly in WRF at this time.  Specifically, WRF runs with the FLG
shortwave radiation model that were not coupled with the FLG longwave radiation scheme ran to 
completion, but produced a zero value for the shortwave flux even during daytime.  As a result, 
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all runs utilizing the FLG shortwave scheme were ultimately discarded.  In addition, a total of 6 
runs failed for undetermined reasons and could not be successfully completed even with a 
significant reduction in the numerical time step. Since all these resulted in 111 unusable 
simulations, a total in 309 completed runs were used for the model analysis.  While removing 111 
runs from the original design affected the marginal distributions of some of the inputs, thus 
partly removing the advantages of the LHS design, the impact of this was small.  Consequently, 
we chose to proceed with the 309-run design rather than create a new LHS design and rerun the 
WRF sensitivity test case. 

The 309-member WRF ensemble discussed above was run at each of the 57 renewable 
generation locations specified earlier.  The output of each such member run at each location was 
a time series of the WRF prediction of either the hub height wind speed (for a wind location) or 
the shortwave flux (for a solar location) at 15-minute intervals for a period of 42 hours.   Each 
time series thus consisted of 169 forecasts of the wind speed or the shortwave flux, and we had 
309 such time series at each of the 57 locations.  

3.3 Forecast Sensitivity Test Results

Our goal was to select a subset of the above ensemble, one that captures as much as possible the 
spread in WRF predictions of hub height wind speed and shortwave flux at the surface observed 
in the full ensemble while also retaining the same amount of accuracy as the full ensemble.  To 
do this, we needed to determine the importance of each physics category for the WRF 
predictions so that schemes that have little or no effect on the predictions can be omitted from 
further consideration, thus reducing the number of ensemble members. 

In order to determine the sensitivities of the predictions to each of the physics categories, we 
performed an analysis of variance (ANOVA) on the WRF predictions.  Among several outputs of 
such an analysis is the fraction of total variability in the output that can be attributed to each 
input and any interactions among inputs that are included in the model.  Higher fractions imply 
greater importance of the input (see Neter et al., 1990, pp. 87-98 for details on ANOVA).    

Recall that for a given location, the output for each ensemble member is a time series of 169 
predictions.  Since these are highly correlated, they cannot be analyzed independently.  
Consequently, we first performed a principal component analysis (PCA) on the 309 time series in 
order to obtain 169 uncorrelated linear transformations, or components, of the original output 
(for details on PCA, see Jolliffe 2002).  Each component consists of 309 values, one for each 
ensemble member.   Because the components are uncorrelated, they can be analyzed separately. 

For a given location, we then performed ANOVA on each of the components, obtaining the 
fractions of the variance in the component that can be attributed to each physics category and 
two-way interactions of all the categories.  The components themselves have different weights as 
they account for different proportions of the variance in the output (at most 25 out of 169 
components accounted for 99% of the variance in these data across the locations), so we 
weighed the ANOVA fractions by the fractions of the variance each component accounted for, 
thus obtaining one weighted average fraction explained by each input or a two-way interaction 
of inputs at a given location.  As an example, Table 2 gives a partial list of the ANOVA results for 
one location, the Agua Caliente solar project.
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Table 2.  Fractions of the variance in the output attributed by the ANOVA to each physics category and top 
2 category interaction contributors at the Agua Caliente solar project in the 309-member ensemble (the 
remaining 13 interactions were omitted for brevity). Note that the “x” notation denotes an interaction of 
two physics categories.

Physics category Fraction of variance

PBL 0.031
LSM 0.064
SW 0.597
LW 0.061
CU 0.011
MP 0.042
PBL × LSM 0.036
LW × MP 0.059

It should be noted that the use of PCA in the context of ensemble down-selection is not new.  For 
example, Lee et al. (2012) used PCA to analyze the importance of each ensemble member at 
different locations at a given time point in the forecast trajectory, by examining the amount each 
ensemble member contributed to the top components.  Our use of PCA was slightly different in 
three ways.  First, Lee et al. performed PCA on the forecast errors while we worked with 
predictions since we did not have the actual observations of either the wind speed or the 
shortwave flux in this step of the analysis (however, we worked with forecast errors in later 
stages of the analysis, as discussed in Section 4).  Second, we performed the PCA on time series 
at a given location rather than on locations at a given time point because in our data the 
temporal correlation was much stronger than the spatial correlation.  Third, we used the results 
of the PCA as inputs to the ANOVA in order to separate the effects of the physics categories while 
Lee et al. used the PCA directly to determine each specific member’s importance without tracking 
the contribution of each category.   Our analysis can thus reveal the importance of each physics 
category more systematically.

Since ultimately we wanted to obtain one reduced set of ensemble members to use across all 
locations, we averaged the fractions attributed to each physics category and two-way interaction 
of categories across locations, weighing each location by its installed capacity relative to the total 
installed capacity (in MW) across the 57 locations.  Note that we did not differentiate between 
solar and wind locations in this step, but only took into account the fraction of the capacity a 
given location contributes to the total capacity.   Table 3 lists the capacity-weighted average 
fractions of the variance attributed to each physics category and two-way interactions of 
categories across the 57 locations.   Figure 4 shows a plot of these average fractions (only the top 
2 variance-contributing interactions are shown for ease of presentation since the remaining 13 
are negligible, as shown in Table 3), as well as the fractions at each location (such as those in 
Table 2).   Moreover, for reference, the plot also shows the capacity-weighted averages across 
locations when solar and wind locations are considered separately. 
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Table 3.  Capacity-weighted average fractions of the variance in the output attributed by ANOVA to each 
physics category and all two-way interactions of categories across the 57 locations in the 309-member 
ensemble.  Note that the categories and their interactions are ordered by the fractions, with top 
contributors listed first, starting with the left-hand column.

Physics category Fraction of variance Physics category Fraction of variance

SW        0.213   CU × MP     0.012   
PBL       0.206   PBL × SW    0.012   
LSM       0.196   LSM × MP    0.011   
CU        0.079   PBL × LW    0.011   
MP        0.041   LSM × SW    0.008   
LW        0.032   LSM × LW    0.008   
PBL × LSM   0.057    SW × CU     0.007   
PBL × CU    0.037    LW × CU     0.007   
LSM × CU    0.021   SW × MP     0.007   
PBL × MP    0.017   SW × LW     0.004
LW × MP     0.015   

Figure 4.  The fraction of the variance attributed to each physics category and top 2 interaction 
contributors in the 309-member ensemble for each solar and wind location (red and green circles, 
respectively), their averages across solar and wind locations separately (“S” and “W”, respectively) and 
capacity-weighted averages across all locations put together (blue stars).

As can be seen from both the table and the plot, the shortwave flux (SW), planetary boundary 
layer (PBL) and land surface model (LSM) physics categories are the top contributors of the 
variance in the output.  The cumulus category (CU) is less important, and the microphysics (MP) 
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and the longwave (LW) categories have the smallest effect.  Moreover, the interactions of the 
PBL and LSM schemes and PBL and CU schemes are the top contributors among the interactions 
although their relative importance is much smaller than that of the top 3 main effects.

The plot in Figure 4 also illustrates the impact of averaging across the solar and wind locations.  
Because the installed capacity across the 57 locations is concentrated quite heavily at the wind 
locations (10.4 GW out of 14.6 GW, or 71% of the total capacity), the importance of the physics 
categories to the wind predictions largely determines the capacity-weighted average across all
locations.  Thus, while PBL and LSM categories played a small role for the solar predictions, since 
they were important for the wind predictions, they were judged to be important in the overall 
analysis.  At the same time, when a physics category made an overwhelming contribution to solar 
predictions (such as in the case of SW), that category was still judged important overall despite 
not playing a large role in the wind predictions. 

Based on this ranking, we decided to down-select the schemes of each physics category as 
follows:  retain all levels of SW, reduce the number of PBL and LSM schemes from 4 to 3 each, 
the number of LW and MP schemes from 3 to 2 each, and the number of CU schemes from 4 to 2.  
To determine which schemes to retain, we calculated statistical contrasts for all pairs of schemes 
for all categories except for SW since we had decided not to omit any SW schemes at this stage.  
Statistical contrasts can be used to estimate the difference between levels of a factor or 
combinations of factors (see Neter et al., 1990, pp. 576-578 for details on contrasts).  The p-value 
for the test of the hypothesis that a contrast is 0 can be used to judge how significantly different 
the levels are, with lower p-values implying more significant differences.  We obtain a p-value for 
each contrast for each location.  To obtain one overall measure of the difference between each 
pair of schemes for each physics category across locations, we weighted 1 minus the p-value by 
the capacity at each location, so the higher the resulting value the greater the difference was 
judged to be.  It should be noted that we only use these values as relative, rather than absolute, 
measures of the differences between the levels.  If one wanted to determine how different all 
pairs of levels are in an absolute sense, one would have to account for the issue of making 
multiple comparisons by adjusting the significance level to control the false discovery rate.

The resulting measures of the difference for all the pairs of schemes for each of the 5 relevant 
physics categories for which the number of schemes were being reduced (i.e., all but SW) are 
shown in Figure 5.  As can be seen from the first plot in the figure, the PBL schemes 2 (MYJ) and 5 
(MYNN Level 2.5) are least different when this difference measure was used, suggesting that 
either of these 2 schemes can be omitted.   Similarly, for the LSM, schemes 3 (RUC) and 7 (Pleim-
Xiu) are least different on this measure.  Thus, either of these can be omitted.  For the CU 
category, our goal was to omit 2 schemes.  The smallest differences were between schemes 1 
(KF) and 2 (BMJ), schemes 1 (KF) and 5 (Grell) and schemes 2 (BMJ) and 5 (Grell), suggesting 
omitting either of these three pairs.  The above-mentioned PBL, LSM and CU schemes were 
therefore all candidates for being omitted.  Since the interactions of PBL and LSM and PBL and CU 
were found to play a relatively important role, we used these to make the final determination 
regarding the schemes to omit within each category.  An analysis of the interaction contrasts led 
us to drop PBL scheme 2 (MYJ), LSM scheme 3 (RUC) and CU schemes 1 (KF) and 5 (Grell).   The 
omitted and retained schemes are listed in Table 4.   We thus proceeded to the next step of the 
analysis with 54 combinations of the retained physics schemes.  
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Figure 5.  Difference measure for each pair of schemes within each of the 5 physics categories for which 
the number of schemes were reduced.

Table 4.  Omitted and retained schemes within each physics category from the initial 309-member 
ensemble.

Physics category Omitted schemes Retained schemes

Boundary Layer MYJ YSU QNSE MYNN2

Land Surface Model RUC Thermal Diffusion Noah Pleim-Xiu

Shortwave Radiation None Dudhia CAM RRTMG

Longwave Radiation RRTMG FLG RRTM

Cumulus Kain-Fritsch Grell 3D BMJ Tiedtke

Microphysics Lin WSM 3-class WSM 5-class

4. WRF Renewable Forecast Case Studies

A total of 9 forecast case studies that spanned all seasons of 2013 were performed for the final 
phase of the research methodology using the derived 54 member ensemble configurations.  The 
case studies were selected based on communication with staff meteorologists at Southern 
California Edison and San Diego Gas and Electric who suggested the time periods representing
synoptic patterns that they associate with dynamically evolving wind and cloud patterns in 
California.  Like the sensitivity test, the case studies were all 42-hour forecasts in duration.
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4.1 Forecast Verification 

Examples of WRF predicted wind and solar forecasts, as well as the synthetically generated
observations for the corresponding time periods are provided below. These comparisons 
demonstrate that the ensemble prediction system generated reasonable wind and solar flux 
forecast results.
A time series of ensemble-predicted hub height wind speeds at 15-minute intervals at the San 
Gorgonio wind park for a forecast case study starting at 12:00 Z on 24 April 2013 is shown in 
Figure 6a.  The figure shows the synthetic observation, as well as the minimum, 25th percentile, 
median, 75th percentile and maximum of the ensemble prediction distribution, at each time point 
of the forecast period. The ensemble forecast accurately predicted the occurrence of a 
significant upward wind ramp around forecast hour 11 where the wind speed increased from 5 to 
20 m/s.  In addition, the vast majority of the synthetic observations fall within the ensemble 
spread indicating the ensemble design was sufficiently dispersive to capture a dynamic wind 
change at San Gorgonio. Figure 6b shows the same quantities for another forecast period, 
starting at 12:00 Z on 20 November 2013.  Again, most observations fall within the ensemble 
spread, and the model was able to accurately forecast hub height wind speeds dropping from 20 
m/s at the beginning of the forecast period to as low as 1 m/s at forecast hour 30.

Figure 6.  (a) Comparison of hub height synthetic observations (black dots) with ensemble forecast 
distribution starting at 12:00 Z on 24 April 2013 at the San Gorgonio wind park. (b) Same as (a) but for a 
forecast period starting at 12:00 Z on 20 November 2013.  In both plots, the blue curve indicates the 
median of the ensemble predictions, the orange curves indicate the minimum and the maximum, and the 
grey lines indicate the 25

th
and the 75

th
percentiles.  

A

B
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Figure 7a shows a typical comparison of synthetic wind speed observations with the ensemble 
forecast distribution at the Tehachapi wind park for a forecast period starting at 12:00 Z on 24 
April 2013.  The ensemble forecast captured the major trends of increasing and decreasing wind 
speeds during the forecast period. However, there were periods during which the synthetic 
observations fell slightly outside the ensemble spread, indicating that the ensemble was likely 
under-dispersive at Tehachapi. In general, the ensemble forecasts performed well at Tehachapi,
but with less skill than observed at Gorgonio. Figure 7b shows a similar comparison of synthetic 
wind speed observations with the ensemble forecast distribution at the Altamont wind park for a 
forecast period starting at 12:00 Z on 6 September 2013.  The ensemble accurately predicted the 
timing and magnitude of wind speed changes.  Most synthetic observations fall within the 
ensemble spread at Altamont, indicating that the forecast design was sufficiently dispersive to 
generate reliable probabilistic predictions.

Figure 7. (a) Comparison of hub height synthetic observations (black dots) with ensemble forecast 
distribution starting at 12:00 Z on 24 April 2013 at the Tehachapi wind park. (b) Same as (a), but at the 
Altamont Pass wind park and for a forecast period starting at 12:00 Z on 6 September.  In both plots, the 
blue curve indicates the median of the ensemble predictions, the orange curves indicate the minimum and 
the maximum, and the grey lines indicate the 25th and the 75th percentiles.  

A comparison of synthetically generated shortwave flux observations (black dots) to the
ensemble forecast distribution for the San Diego distributed solar domain for a 42-hour forecast 
period starting at 12:00 Z on 5 May 2013 is shown in Figure 8a. Moderate cloud cover was
present in the region on the first day of the forecast period, which resulted in ensemble 

A

B
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predicted peak shortwave flux values ranging from 850 to 1000 W/m2. The peak synthetic 
observation shortwave flux value on forecast day 1 was around 850 W/ m2 and fell within the 
lower limit of the ensemble spread. Widespread cloud cover was observed on the second day of 
the forecast period with a peak shortwave flux observation around 400 W/m2.  The ensemble 
spread accurately captured the significant reduction in shortwave flux relative to day one, though 
the observation was on the lower end of the forecast distribution.  It is also interesting to note 
the enormous spread in predicted peak shortwave flux on forecast day 2 with values ranging 
from 375 to 950 W/m2.  The magnitude of the ensemble spread highlights the degree of 
uncertainty associated with solar forecasting in the San Diego area.

Synthetic shortwave flux observations and ensemble forecast distribution for the same time 
period as Figure 8a, but for the San Francisco Bay area distributed solar domain, are shown in 
Figure 8b.  As in the case of the San Diego domain, there was increasing cloud cover from 
forecast day 1 to 2 with peak synthetic shortwave flux observations decreasing from around 800 
to 600 W/m2.  All of the synthetic observations fall within the ensemble spread and the median 
of the forecast distribution (blue line) matches the observations well.  This excellent agreement 
between observation and prediction is typical of the WRF case study results for the San Francisco 
Bay region.

Figure 8.  Comparison of shortwave flux at the surface synthetic observations (black dots) with ensemble 
forecast distribution starting at 12:00 Z on 5 May 2013 for the San Diego distributed solar domain. (b) 
Same as (a), but for the San Francisco Bay area distributed solar domain.  In both plots, the blue curve 
indicates the median of the ensemble predictions, the orange curves indicate the minimum and the 
maximum, and the grey lines indicate the 25th and the 75th percentiles.  

A

B
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4.2 Case Study Forecast Analysis

The objective of the final stage of the analysis was to further reduce the 54-member ensemble to 
a more efficient subset.  Since for each of the case studies we also have synthetic observations, 
we could compute forecast errors at every time point for each location and case study and, 
consequently, the root mean squared error (RMSE) of each ensemble member, given by

where et is the forecast error at time point t.  We obtained the capacity-weighted average RMSE 
for all wind and solar locations separately, for each ensemble member and case study, and these 
are shown in Figure 9.  As Figure 9a shows, the RMSE values at the solar locations for case study 9 
were markedly lower for all ensemble members than for all other case studies.   Figure 9b shows 
that the same was true, albeit to a lesser extent, for case study 8 at the wind locations.  This is 
because wind speeds turned out to be low at the major wind resource locations of Tehachapiand 
Gorgonio, and cloud cover extent was minimal for these two case studies.  As a result, these two 
case studies were removed from further consideration so that they would not bias the results.   
Thus, in the remainder of this report we discuss the results for casestudies 1-7 only.  

Figure 9.  The capacity-weighted average RMSE of (a) solar and (b) wind locations by case (line color) and 
ensemble member.

Since, as mentioned earlier, we had access to synthetic observations of the wind speed or the 
shortwave flux for each location and case study, we repeated an equivalent analysis described 
previously for the 309-member ensemble, but now applying it to forecast errors rather than 
predictions.   Note that since only 1 scheme was retained for each of the LW and MP categories, 
there were now only 4 physics categories with varying schemes.  

As in the case of the 309-member ensemble, we began with an ANOVA for each case study.  This 
yielded fractions of the variance in the forecast errors in the 54-member ensemble explained by
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the differences in the schemes within each of the four physics categories for each of the case 
studies.  These are listed in Table 5 and shown in Figure 10.  The latter shows that the physics 
categories’ contributions to the overall forecast error variance tended to be consistent across 
cases, that is, no category was important for some cases, but not for others.  

Table 5.  Capacity-weighted average fractions of the variance in the forecast errors attributed by ANOVA to 
each physics category and two-way interactions of categories across the 57 locations in the 54-member 
ensemble, for each of case studies 1—7.   Also listed in the last column are the averages of these fractions 
across the 7 case studies.  Note that the physics categories and their interactions are ordered by the 
average fraction, with top contributors listed first.

                Case study 
Physics category 1 2 3 4 5 6 7 Average

LSM     0.275 0.225 0.287 0.269 0.282 0.278 0.284 0.271
PBL     0.254 0.282 0.269 0.192 0.207 0.175 0.226 0.230
SW      0.233 0.195 0.233 0.206 0.228 0.212 0.224 0.219   
CU      0.042 0.074 0.055 0.084 0.058 0.094 0.082 0.070
PBL × LSM 0.135 0.108 0.112 0.123 0.127 0.125 0.084 0.116
PBL ×CU  0.016 0.036 0.015 0.030 0.028 0.047 0.027 0.028
LSM×CU  0.019 0.023 0.014 0.033 0.028 0.032 0.019 0.024
LSM×SW  0.013 0.020 0.007 0.026 0.017 0.015 0.021 0.017
PBL×SW  0.010 0.026 0.005 0.022 0.014 0.014 0.021 0.016
SW×CU   0.003 0.013 0.002 0.015 0.009 0.007 0.011 0.009

Figure 10.  The fraction of the variance attributed to each physics category and top category interaction 
contributor in the 54-member ensemble for each of case studies 1-7 (labeled with these numbers in the 
plot).  The lines are drawn for reference to help follow each case’s fractions.

To make an overall assessment of the categories’ contributions across the seven case studies, the 
seven fractions for each physics category and interaction were averaged, weighing the case 
studies equally.  These average fractions are listed in the last column of Table 5 and shown as 
blue stars in Figures 10 and 11.   They led to very similar conclusions as those reached in the 309-
member ensemble analysis:  the LSM, PBL and SW physics were of highest and approximately 
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equal importance, while the CU physics was relatively less important compared to the other 
three.  Moreover, the interaction of the PBL and the LSM physics was still important. 

Figure 11.  The fraction of the variance attributed to each physics category and top interaction contributor 
in the 54-member ensemble for each solar and wind location (red and green circles, respectively), their 
averages across solar and wind locations separately (“S” and “W”, respectively) and capacity-weighted 
averages across all locations put together (blue stars).

Since, according to the ANOVA, the CU physics category did not have a large impact on the 
forecast errors, one of the two CU schemes was omitted.  To determine whether any of the 
schemes within each of the other 3 physics categories could be omitted, we used statistical 
contrasts in the same way as described in Section 3.3 for the 309-member ensemble.  Figure 12
shows the measure of the difference between all pairs of schemes for each the 3 most important 
categories – PBL, LSM and SW – by case study.  The plots in the figure also show the means of 
these difference measures for each pair of schemes across the 7 case studies.  All pairs of 
schemes within the PBL and LSM categories have similar difference measures.  For the SW 
category, however, the difference measure for schemes 3 (CAM) and 4 (RRTMG) is markedly 
lower than for the other two pairs of schemes.  This suggests that either of these SW schemes 
can be omitted.   Dropping one of the CU and one of the SW schemes will result in 18 members, 
which is a highly feasible ensemble size to run for real-time ensemble weather forecasting.
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Figure 12.  Difference measure for each pair of schemes for each of the 3 top physics category contributors, by case 
study (labeled with their number in the plots).  Also shown are the overall means of the difference measure for each 
pair of schemes, averaged across the case studies.  All the symbols and the colors of the lines are as in Figure 10.  

All that remained to finalize the 18-member ensemble was to determine which CU scheme (2 or 
6) and SW scheme (3 or 4) to retain. Figure 13 shows the plot of the mean RMSE values 
(averaged over case studies and location, with capacity weighting for locations) of the ensemble 
members with each combination of these schemes.  Also shown are the grand means of the 
RMSE, i.e., averages of the mean RMSEs over all the ensemble members for each combination.  
The plot shows that the combinations with CU = 2 (BMJ) tend to have slightly higher RMSEs than 
those with CU = 6 (Tiedtke), suggesting that CU = 2 should be omitted.  There is no discernible 
difference between the RMSEs of ensemble members with SW = 3 and SW = 4. 
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Figure 13.  The mean ensemble RMSE (capacity-weighted average over location and average over case studies for each 
member) by the SW (2 = red, 3 = green) and CU scheme (2 = circle, 6 = triangle) combination.   There are 9 points for 
each combination of the two categories, one for each ensemble member with that combination. The mean for each 
SW and CU scheme combination is marked with a black star. The values for SW = 1 are not shown since this scheme 
was not considered for omission.  

To decide which of the SW schemes to omit, we also considered the amount of spread in the 
reduced ensemble relative to the full ensemble since an ideal reduced ensemble would have 
spread close to that of the original ensemble.  For each location and case study, at each time 
point, we calculated the ratio of the standard deviation in the reduced 18-member ensemble to 
that of the original 54-member ensemble.  These ratios were averaged across all the 169 time 
points, resulting in one mean ratio value for each location and case study.  The mean ratios were 
in turn averaged over locations, weighing locations by their relative capacities.  We obtained 7 
such capacity-weighted ratio averages, one for each case study.  A ratio of 1, less than 1 and 
greater than 1 indicates that on average the reduced ensemble’s spread is the same, smaller or 
greater than that of the original one, respectively.  Thus, an average ratio equal to 1 is ideal.

These 7 ratio averages are plotted in Figure 14 for the reduced ensembles, with each reduced 
ensemble obtained by dropping one of the four combinations of the SW and CU schemes 
considered for omission (expressed in terms of the retained schemes on the x-axis of the plot).   
The figure indicates that ensembles obtained by omitting SW = 4 (i.e., retaining SW = 1 and 3) 
have average ratios closer to 1 than those obtained by omitting SW = 3 (i.e., retaining 1 and 4),
suggesting that SW = 4 (RRTMG) should be omitted.  Indeed, retaining SW = 1 and 3 (Dudhia and 
RRTMG) and CU = 6 (Tiedtke) (as suggested by the RMSE comparison in Figure 14), results in an 
average spread ratio closest to 1 of the 4 combinations.   
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Figure 14. Mean ratio of the reduced 18-member ensemble spread to that of the full 54-member ensemble 
(ratio equal to, less than or greater than 1 implies the same, smaller and greater average spread, 
respectively, in the reduced ensemble relative to that in the full one) for each of the reduced ensembles 
(obtained by retaining only the SW and CU schemes indicated on the x-axis; colors and symbols distinguish 
the four combinations of the retained schemes).  The stars indicate the means of these ratios for each of 
the ensembles, while the dashed line indicates the average ratio of 1 (equal spread in the reduced and full 
ensembles on the average) for reference.  See the text for details on how the mean ratios were calculated.

To ensure that the 18-member ensemble resulting from omitting SW = 4 and CU = 2 schemes has 
the same level of accuracy as the original 54-member ensemble, we compared the RMSEs of the 
two ensembles. The distributions of the mean RMSEs (averaged across locations using capacity 
weighting) by case study are shown side by side in the form of boxplots for the original and the 
reduced ensembles at solar and wind locations in Figures 15a and 15b, respectively.  Also shown 
in both figures are the averages of these across the 7 case studies.  The two distributions are 
mostly similar when considered individually for each case study and when the RMSEs are 
averaged across the case studies. The RMSE values tend to be higher for case studies 6 and 7 at 
the solar locations, but even in these cases, the two distributions overlap (and in some cases, 
such as case study 7 at wind locations, it is the reduced ensemble that tends to yield lower 
RMSEs).   Thus, we can conclude that the accuracy of the reduced 18-member ensemble is on par 
with that of the original 54-member ensemble.
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Figure 15.  Distributions of RMSEs of the original 54-member (in red) and the reduced 18-member (in blue) 
ensembles at (a) solar and (b) wind locations, separately by case study, and averaged across the case 
studies. 

Based on results of the WRF forecast error analysis, we thus make the following recommendation 
for the physics schemes that should be included in the 18-member multi-physics ensemble for 
predicting renewable generation for current California wind and solar resources:

Physics category Retained schemes

Boundary Layer YSU QNSE MYNN2

Land Surface Model Thermal Diffusion Noah Pleim-Xiu

Shortwave Radiation Dudhia CAM

Longwave Radiation RRTM

Cumulus Tiedtke

Microphysics WSM 5-class

5. Conclusions

Our analysis of the WRF ensemble forecasts of wind and solar resources leads to the following 
conclusions:

 the WRF physics categories that were the primary contributors to ensemble wind speed
prediction and forecast error variability were the planetary boundary layer and land 
surface models

 to a lesser degree, the interaction of the boundary layer and land surface schemes
contributed to ensemble wind speed prediction and forecast error variability and should 
be represented in an ensemble design
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 the shortwave radiation model was the dominant source of shortwave flux prediction 
and forecast error variability for California solar renewable resources

 the cumulus, longwave radiation, and microphysics categories were found to have 
minimal impact on wind and solar predictions in California

 analysis of variance of a limited number of forecast case studies indicated that only 18 
ensemble members were needed to generate accurate renewable forecasts with 
sufficient spread to capture dynamically evolving atmospheric conditions that affect wind 
and solar generation in California

6. Future Work

Several caveats of the above analysis should be noted.  First, in the analysis of the WRF forecast 
errors, synthetic rather than real observations were used.  While synthetic observations are the 
best possible substitute for the actual ones, using the former in place of the latter means that the 
forecast error values have some amount of error in them.  The conclusions from our analysis 
need to be tested with real observations in future studies. 

Second, we used what is perhaps the most obvious approach for combining the ANOVA results 
across the 57 locations.  However, more optimal ways for doing this may exist, and we did not 
explore other options in this project due to time constraints.  Such an exploration should 
certainly be a part of any future work in this area.  The same is true for creating the difference 
measure to judge the degree to which any pair of schemes within a category is similar to one 
another.   Similarly, more sophisticated ways to obtain an overall measure of a spread of an 
ensemble than discussed in this work should be explored.  

In this work, we weighed the case studies equally.  A better weighting of the case studies may be 
by their ramp characteristics, such as the presence of ramps (sudden changes in generated 
power), ramp magnitude and duration.  Since larger and longer ramp events present a challenge 
to utilities and grid operators, it may be useful to emphasize case studies with such events in 
determining the optimal ensemble.  While ramps could be defined in terms of the renewable
resource, such as wind speed or the shortwave flux, ideally this would be done in terms of 
generated power.  Obtaining such data may be difficult, but it would allow for a much more 
direct assessment of the quality of a particular ensemble member in general and in terms of 
ramp prediction in particular.

In addition, the conclusions of this research are based on a limited number of forecast case 
studies.  Though the individual study forecasts span all seasons, additional case studies need to
be run to ensure the findings of this study are valid for a broader range of atmospheric 
conditions.
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Appendix Table 1: List of wind and solar renewable resource sites and their associated installed capacities
that were included in the study.

Station Name
Renewable
Type

Installed
Capacity (MW) State

Tehachapi_Alta_Wind_Energy_Center Wind 1710 CA

San_Gorgonio_Pass_Wind_Farm Wind 619 CA

Altamont_Pass_High_Winds_Wind_Farm Wind 768 CA

Shiloh_Wind_Farm Wind 300 CA

Cedar_Creek_Wind_Farm Wind 550 CO

Peetz_Wind_Farm Wind 400 CO

Cedar_Point_Wind_Farm Wind 243 CO

Northeastern_Colorado_Wind_Energy_Center Wind 174 CO

Colorado_Green_Wind_Farm Wind 162 CO

Goshen_Wind_Farm_II Wind 125 ID

Glacier_Wind_Farm Wind 210 MT

Rim_Rock_Wind_Farm Wind 189 MT

Judith_Gap_Wind_Farm Wind 135 MT

Spring_Valley_Wind_Farm Wind 152 NV

New_Mexico_Wind_Energy_Center Wind 204 NM

Shepherds_Flat_Wind_Farm Wind 845 OR

Biglow_Canyon_Wind_Farm Wind 450 OR

Klondike_Wind_Farm Wind 400 OR

Stateline_Wind_Project Wind 300 OR

Leaning_Juniper_Wind_Project Wind 201 OR

Milford_Wind_Corridor_Project Wind 305 UT

Windy_Point_Windy_Flats Wind 400 WA

Lower_Snake_River_Wind_Project Wind 343 WA

Wild_Horse_Wind_Farm Wind 229 WA

White_Creek_Wind_Power_Project Wind 204 WA

Big_Horn_Wind_Farm Wind 200 WA

Glenrock_wind_farm Wind 237 WY

Top_of_the_World Wind 200 WY

Wyoming_Wind_Energy_Center Wind 144 WY

Ivanpah_Solar_Power_Facility Solar Thermal 392 CA

Solar_Energy_Generating_Systems Solar Thermal 354 CA

Solana_Generating_Station Solar Thermal 280 AZ

Nevada_Solar_One Solar Thermal 64 NV

Agua_Caliente_Solar_Project Solar PV 251 AZ

Topaz_Solar_Farm Solar PV 300 CA

California_Valley_Solar_Ranch Solar PV 250 CA

Imperial_Solar_Energy_Center_South Solar PV 200 CA

Copper_Mountain_Solar_Facility Solar PV 150 NV
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Mesquite_Solar_project Solar PV 150 AZ

Catalina_Solar_Project Solar PV 143 CA

Campo_Verde_Solar_Project Solar PV 139 CA

Centinela_Solar_Energy_Project Solar PV 125 CA

Arlington_Valley_Solar_II Solar PV 125 AZ

Antelope_Valley_Solar_Ranch Solar PV 100 CA

Alpine_Solar Solar PV 66 CA

Alpaugh_Solar_Plant Solar PV 60 CA

Silver_State_North Solar PV 60 NV

Avenal_Solar_Facility Solar PV 58 CA

Dist_Solar_1_Central_Valley_Sacramento Solar Dist. 111 CA

Dist_Solar_2_Central_Valley_Fresno Solar Dist. 111 CA

Dist_Solar_3_North_Coast_Bay_Area Solar Dist. 111 CA

Dist_Solar_4_South_Coast_Los_Angeles Solar Dist. 111 CA

Dist_Solar_5_South_Coast_San_Diego Solar Dist. 111 CA


